Exercise 52

Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
y=\frac{2 e^{x}}{e^{x}-5}
$$

Solution

Calculate the limits as $x \rightarrow \pm \infty$ to determine the horizontal asymptote. In the second limit, make the substitution, $x=-u$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 e^{x}}{e^{x}-5} & =\lim _{x \rightarrow \infty} \frac{2}{1-\frac{5}{e^{x}}}=\frac{2}{1-0}=2 \\
\lim _{x \rightarrow-\infty} \frac{2 e^{x}}{e^{x}-5} & =\lim _{u \rightarrow \infty} \frac{2 e^{-u}}{e^{-u}-5} \\
& =\lim _{u \rightarrow \infty} \frac{\frac{2}{e^{u}}}{\frac{1}{e^{u}}-5} \\
& =\frac{0}{0-5} \\
& =0
\end{aligned}
$$

Therefore, the horizontal asymptotes are $y=2$ and $y=0$. The vertical asymptotes are found by setting what's in the denominator equal to zero and solving for x.

$$
\begin{gathered}
e^{x}-5=0 \\
e^{x}=5 \\
\ln e^{x}=\ln 5 \\
x \ln e=\ln 5 \\
x(1)=\ln 5 \\
x=\ln 5
\end{gathered}
$$

The function is graphed versus x below with the asymptotes labelled.

